Two-Scale Regularity for Homogenization Problems with Nonsmooth Fine Scale Geometry
نویسندگان
چکیده
منابع مشابه
Sparse Two-Scale FEM for Homogenization Problems
We analyze two-scale Finite Element Methods for the numerical solution of elliptic homogenization problems with coefficients oscillating at a small length scale ε 1. Based on a refined two-scale regularity on the solutions, two-scale tensor product FE spaces are introduced and error estimates which are robust (i.e. independent of ε) are given. We show that under additional two-scale regularity ...
متن کاملTwo-Scale FEM for Homogenization Problems
The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε " 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without ana...
متن کاملHomogenization and Two - Scale Convergence *
Following an idea of G. Nguetseng, the author defines a notion of "two-scale" convergence, which is aimed at a better description of sequences of oscillating functions. Bounded sequences in L2(f) are proven to be relatively compact with respect to this new type of convergence. A corrector-type theorem (i.e., which permits, in some cases, replacing a sequence by its "two-scale" limit, up to a st...
متن کاملTwo-scale homogenization of piezoelectric perforated structures
We are interested in the homogenization of elastic-electric coupling equation, with rapidly oscillating coefficients, in periodically perforated piezoelectric body. We justify the two first terms in the usual asymptotic development of the problem solution. For the main convergence results of this paper, we use the notion of two-scale convergence. A two-scale homogenized system is obtained as th...
متن کاملDual subgradient algorithms for large-scale nonsmooth learning problems
Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially mean...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Models and Methods in Applied Sciences
سال: 2003
ISSN: 0218-2025,1793-6314
DOI: 10.1142/s0218202503002817